Al Save for later

ADVANCED
JAVASCRIPT
CONCEPTS FOR
INTERVIEW

| @subhajit-adhikary

001

CALLBAKCS

A JavaScript callback is a function which is to be executed
after another function has finished execution.

Simply said:- Any function that is
passed as an argument to another

let fruits = ["app.l_e“l "banana"' "kiWi"];

el e function so that it can be executed
setTimeout(() = in that other function is called as a
animate(fruits[0]); . . .
cetTimeout(() = { callback function. This results in
animate(fruits[1]); Cal.l.baCk he“.

setTimeout(() = {
animate(fruits[2]);
}, 1000);

}, 1000); OUtPUt

. 1000);
b . .
animating apple
const animate = (fruit) = { . -
console.log("animating", fruit); anlmatl"g LELENE]

¥ animating kiwi

animateAll(animate);

' @subhajit-adhikary J s é

0]0).

PROMISES

A promise is an object that will produce a single value sometime
in the future. If the promise is successful, it will produce a
resolved value, but if something goes wrong then it will produce
a reason why the promise failed.

Simply said:- It behaves very much similar to real life promises.

let fruits = ["apple", "banana", "kiwi"];

const animateOne = (fruit, animate) = {

return new Promise((res, rej) = {

setTimeout(() = {

animate(fruit);

res(true); O
gl utput
);
i C .

animating apple

const animateAll = (animate) = {

animateOne(fruits[0], animate) anlmﬂtlng banana
.then(() = animateOne(fruits[1], animate)) animating kiw:i.

.then(() = animateOne(fruits[2], animate))
.catch((err) = console.log("some error occurred", err));

[P

const animate = (fruit) = {
console.log("animating", fruit);

i

animateAllCanimate);

| @subhajit-adhikary

003

ASYNC/AWAIT

Async/Await makes it easier to write promises. The keyword
'async' before a function makes the function return a
promise, always. And the keyword await is used inside async
functions, which makes the program wait until the Promise
resolves.

let fruits = ["apple", "banana", "kiwi"];

const animateOne = (fruit, animate) = {
return new Promise((res, rej) = {
setTimeout(() = {
animate(fruit);
res(true);

}, 1000); OUtpUt

[)E

b

const animateAll = async (animate) = { anlmatlng app-LE
await animateOne(fruits[0], animate); animating banana
await animateOne(fruits[1], animate);) X ..
await animateOne(fruits[2], animate); anlmatlng I{lWl

75

const animate = (fruit) = {
console.log("animating", fruit);

i

animateAll(animate);

' @subhajit-adhikary J s é

004

STRICT MODE

The "use strict" directive enables JavaScript's strict mode.
This was introduced in ECMAScript b. It enforces stricter
parsing and error handling on the code at runtime. It also
helps you write cleaner code and catch errors and bugs that
might otherwise go unnoticed.

8y
85 "use strict";
86 X=56;

87 console.log(x)

=42

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS Code v = E| see AN X

d:\web_dev_recap\js_prep\js_youtube_explain\js_practice. js:86
X=56,;

n

ReferenceError: x is not defined
at Object.<anonymous> (d:\web_dev_recap\js_prep\js_youtube_explain\js_practice.js:86:2)
at Module._compile (node:internal/modules/cjs/loader:1376:14)
at Module._extensions..js (node:internal/modules/cjs/loader:1435:10)
at Module.load (node:internal/modules/cjs/loader:1207:32)
at Module._load (node:internal/modules/cjs/loader:1023:12)
at Function.executeUserEntryPoint [as runMain] (node:internal/modules/run_main:135:12)
at node:internal/main/run_main_module:28:49

Node.js v20.11.1

@subhajit-adhikary J S é

O

HIGHER ORDER FUNCTIONS

Functions can be assigned to variables in the same way that
strings or arrays can. They can be passed into other
functions as parameters or returned from them as well.

Simple words:- It is a function that accepts functions as
parameters and/or returns a function.

Eg:- map, filter, reduce, some, every, forEach, sort etc.

const ages = [23, 45, 12, 67, 18];

const doubleAges = ages.map((age) = age*2);
console. log(doubleAges);

const agelLessThand4® = ages.filter((age) = age<u0)
console. log(ageLessThand0);

Q
' @subhajit-adhikary J s é

006

CALL, APPLY,

BIND

Callis a function that helps you change the context of the invoking function. In
layperson's terms, it helps you replace the value of this inside a function with

whatever value you want.

// call, apply, bind

function fullName(greet) {

‘ console.log(greet + " " + this.firstName + " " + this.lastName);

}

const personl = {
firstName: "Elon",
lastName: "Musk",

H;

const person2 = {
firstName: "Ratan",
lastName: "Tata",

b

fullName.call(personl, "Hello"); // Hello Elon Musk
fullName.call(person2, "Hi"); // Hi Ratan Tata

fullName.apply(personl, ["Hello"]); // Hello Elon Musk
fullName.apply(person2, ["Hi"]l); // Hi Ratan Tata

const personlFullName
const person2FullName

fullName.bind(personl); // Hello Elon Musk
fullName.bind(person2); // Hi Ratan Tata

console.log("execute some other code here");
personlFullName("Hello"); // Hello Elon Musk
person2FullName("Hi"); // Hi Ratan Tata

Apply is very similar to the call
function. The only difference is
that in apply you can pass an
array as an argument list.

Bind is a function that helps you
create another function that you
can execute later with the new
context of this that is provided.

Output

Hello Elon Musk

Hi Ratan Tata

Hello Elon Musk

Hi Ratan Tata

execute some other code here
Hello Elon Musk

Hi Ratan Tata

007

SCOPE

The scope is the current context of execution in which values and expressions are
"visible".

JavaScript variables have 3 types of scope:

Block scope:- Variables declared inside a { } block cannot be accessed from outside
the block. let and const have block scope.

Function scope:- Variables defined inside a function are not accessible (visible) from
outside the function. let, const and var have function scope.

Global scope:- Variables declared Globally (outside any function) have Global Scope.
let, const and var have global scope.

// let with different scopes

// * let creates a block scope
// * Re—declaration in NOT allowed (in same scope)
// * Re—assignment is allowed

i // block scope
let x = 0;
console.log(x); // @

let : let x = 1; // Error

{
let x = 1;
X =>2"
console.log(x); // 2

}

console.log(x); // Error in Global Scope

007

SCOPE

// * No block scope, and can be re-declared
// * Only had function scope
// * var are hoisted, so they can be used before the declaration

= o var

var x = 2; // valid

// var with different scopes

console.log(y) // valid

var y = 3

z=4

console.log(z) // valid
var z;

// const with different scopes

// * const creates a block scope
// * Re—declaration in NOT allowed
// * Re-assignment is NOT allowed
// * Must be assigned at declaration time.

{ // block scope
onst x; //Error

console.log(x); // Error in global scope

008

CLOSURES

A closure is the combination of a function bundled together (enclosed)
with references to its surrounding state (the lexical environment).

Simple words:- A closure gives you access to an outer function's
variables and functions from an inner function.

// closures

function createHustler(name){

let greetHi = 'Hi ' ;

function greet(){

‘ return greetHi + name + ', welcome to hustlers group';

3

return greet;

}

let greetFn = createHustler('Ankit');
console.log(greetFn());

Hi Ankit, welcome to hustlers group

JS

009

HOISTING

A javascript mechanism where variables with var and function
declarations are moved to the top of their scope before code execution.
@ function declarations are properly hoisted (not arrow functions)

var is hoisted. T
myPlace = 'Bengaluru'; // var is hoisted

console.log(myPlace);
var myPlace;

let myName = "Subhajit";
sayHi(); // valid

function sayHi() {
let greet = "hi";
console.log(greet, myName);

}

sayHello(); // error
let sayHello = function() {
| console. log(myName);

};

Bengaluru

hi Subhajit
d:\web_dev_recap\js_prep\js_youtube_explain\js_practice.js:200
sayHello(); // error

A

ReferenceError: Cannot access 'sayHello' before initialization

°° TIFE (Immediately Invoked
Functional Expressions)

An IIFE is a function that is called immediately after it is defined.

Use cases of IIFE:-

@ Avoid polluting the global namespace.

@ Execute async/await functions.

@ Provides encapsulation, allowing you to create private scopes for
variables and functions.

const pr = () = {
return new Promise((res, rej) =
setTimeout(() = {
res("resolved");
}, 1500);
)5
i

Casync () = {
const a = await pr
console.logla);

const b = await pr();
console.log(b);

const ¢ = await pr();

console.loglc);

$)0);

5+ in é
@subhajit-adhikary

CURRYING

It involves breaking down a function that takes multiple arguments into
a series of functions that take one argument each.

Simple words:- This creates a chain of functions, where each function
returns another function until the final result is achieved.

// currying
// basic use case
function sum(a){
return function(b){
return function(e){
return atb+c;

b

}

}
console.log(sum(3)(4)(5));

// real life use case of event logger with time, type, message
const logger = (time) = (type) = (message) = ‘At time: ${time}, an event
of type: ${type} occurred with full details as: ${message}’;

const eventsNow = logger('5am');
const errorEvent = eventsNow('error');
console.log(errorEvent('cannot set properties of null'))

12
At time: 5am, an event of type: error occurred with full details as: cannot set properties

of null

012

DEBOUNCING

Debouncing is a strategy used to improve the performance of a feature
by controlling the time at which a function should be executed.

Simple words:- It delays the execution of your code until the user stops
performing a certain action for a specified amount of time. It is a
practice used to improve browser performance.

Js code

// debouncing
/ Js file

const inputElement = document.getElementById('fruits');

function printInputText(text) {
\ console.log(text);
}

function debounce(fx, delay){

let timeoutId = null;

return function(text){
clearTimeout(timeoutId);
timeoutId = setTimeout(() = {
‘ fx(text);
}, delay);

}

}

const debounceFn = debounce(printInputText, 2000);

inputElement. addEventListener('input', (event) = {
L debounceFn(event.target.value);
)

HTML code

<!DOCTYPE html>

<html lang="en">

<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1l.8">
<title>Document</title>

</head>

<body>
<label for="fruits">Enter your favourite fruits</label>
<input type="text" id="fruits" name="fruits">
<script src="./index.js"></script>

</body>

</html>

" THROTTLING

Throttling is a mechanism that allows a function execution for a limited
number of times after that it will block its execution.

Simple words:- It limits the execution of your code to once in every
specified time interval. It is a practice used to improve browser
performance.

Js code

// throttling (js file)
let count = 0;
function printScroll() {

‘ 2::::{:1;.09("51::1'011 called", count); HTM L COde

}
<!DOCTYPE html>
function throttle(fx, delay){ <html lang="en">
let timeoutId = null; <head>
return function(){ <meta charset‘i" UTF-8"> ‘ ' ' -
1£C1timeoutId) { ﬁl?ta name="viewport" content="width=device-width, initial-scale=1.8">
) . <link rel="stylesheet" href="./styles.css">
timeoutId = setTimeout(() = { <title>Document</title>
x(); </head>
clearTimeout(timeoutId); <body>
timeoutId = null; <div class="div-element-aqua">
. delay); </div>
1 <div class="div-element-lime">
</div>
} <script src="./index.js"></script>
} </body>
</html>

const throttleFn = throttle(printScroll, 2000);

document.addEventListener('scroll', (e) = {
throttleFn();

014

POLYFILLS

@ Polyfill is a way of providing futuristic APl not available in browser.
@& We might need to do the native prototype modifications, so that we

can get a feature/API.
@ There might be situations when we have a method not supported for

specific browsers, in such cases we can use polyfills.

// polyfills
if(!Array.prototype.contains){
Array.prototype.contains = function(searchElement) {

‘ return this.indexOf(searchElement) =0 ? true : false

}

Save for later

KEEP LEARNING

PS:- Remember, these tips are just the start of
your advanced journey wit

There's a
keep cod

\ways more to lea

n Javascript.

'n and explore, so

Ing and keep growing!

Save this post for future use

n

Was this helpful ?? é

“
. @subhajit-adhikary

JS

Did you find it
Useful?

Leave a comment!

lll

= ABD UR REHMAN NAWAZ

g NAWAZ
. T+

'y 7 :
AN WﬁRRAlCH&Z&Z@GMAlL.ocn

................ IHDI LL i_@_my _5-{_3;;;__1_}":;5 |QJK”:€|_: snnmnannnns’

Like Comment Repost

v ® @

